ZASTOSOWANIE SIARCZANU ŻELAZA(II) I NADTLENKU WODORU DO PODCZYSZCZANIA ODCIEKÓW SKŁADOWISKOWYCH

Jacek Leszczyński¹

¹ Katedra Technologii w Inżynierii i Ochronie Środowiska, Wydział Budownictwa i Inżynierii Środowiska, Politechnika Białostocka, ul. Wiejska 45 B, 15-351 Białystok, e-mail: jleszczynski@pb.edu.pl

STRESZCZENIE

W artykule przedstawiono wyniki badań podczyszczania odcieków pochodzących z ustabilizowanego składowiska odpadów stałych z wykorzystaniem siarczanu żelaza(II) i nadtlenku wodoru. Odcieki przeznaczone do badań charakteryzowały się barwą 1050 gPt/m³, wartością pH 7,95; ChZT 840 gO₂/m³; BZT₅ 60 gO₂/m³; NH₄⁺ 110 gN/m³; przewodnością 6,05 mS/cm; absorbancją UV₂₅₄ 0,32 i mętnością 1,3 NTU. Proces prowadzono stosując różne proporcje H₂O₂/Fe w zakresie od 1,6 do 32,4. Najwyższą skuteczność usuwania zanieczyszczeń uzyskano przy stosunku Fe/ChZT 0,71 i H₂O₂/Fe 5,4, w tych warunkach obniżenie ChZT wynosiło 74,1%, barwy 94,5% i absorbancji UV₂₅₄ 88%.

Słowa kluczowe: odcieki składowiskowe, chemiczne utlenianie.

USING IRON(II) SULFATE AND HYDROGEN PEROXIDE TO PRETREATMENT OF LANDFILL LEACHATE

ABSTRACT

In this paper, the application of Iron(II) sulfate and hydrogen peroxide oxidation processes for stabilized landfill leachate treatment was investigated. The leachate came from a municipal sanitary landfill and the average values of its main parameters were: pH 7,95; COD 840 gO₂/m³; BOD 60 gO₂/m³; NH₄⁺ 110 gN/m³; conductivity 6,05 mS/cm; UV₂₅₄ absorbance 0,32 and turbidity 1,3 NTU. It is demonstrated that the application of Iron(II) sulfate and hydrogen peroxide can effectively remove leachate pollutants such as color, COD and UV₂₅₄ absorbance. A combination process, accomplished at different weight ratios of reagents H₂O₂/Fe was 1,6 to 32,4. The best conditions for process were found at a ratio Fe/COD equal to 0,71 and H₂O₂/Fe equal to 5,4. Leachates were significantly oxidized under these conditions in terms of COD removal 74,1%, color removal 94,5% and UV₂₅₄ absorbance removal 88%.

Keywords: landfill leachate; chemical oxidation.

WPROWADZENIE

Odcieki składowiskowe powstają w wyniku przesiąkania wód opadowych przez warstwę zdeponowanych odpadów. Zachodzące w trakcie składowania procesy prowadzą do rozkładu biodegradowalnych frakcji materii organicznej. Dlatego odcieki pochodzące ze składowisk ustabilizowanych wykazują znacznie niższe wartości ChZT i OWO oraz charakteryzują się stosunkiem BZT_s/ChZT poniżej 0,1. W tego typu składowiskach przeważają związki organiczne trudniej ulegające biodegradacji [Morais i in. 2005, Haapea i in. 2002]. Odcieki mogą zawierać zanieczyszczenia uznawane za niebezpieczne, w tym wielopierścieniowe węglowodory aromatyczne (WWA) i pestycydy [Rügge i in. 1999]. Oprócz zanieczyszczeń organicznych w odciekach mogą znajdować się metale ciężkie, rozpuszczone substancje mineralne, głównie chlorki oraz wysokie stężenia azotu amonowego [Grygorczuk-Petersons 2005].

Do oczyszczania odcieków składowiskowych stosowane są zarówno procesy fizyczno--chemiczne, jak i biologiczne. Procesy fizyczno--chemiczne pozwalają na częściowe usunięcie zanieczyszczeń, jak również mogą prowadzić do przekształcania zanieczyszczeń obecnych w odciekach zwiększając udział frakcji biodegradowlnej, co umożliwia ich dalsze oczyszczanie metodami biologicznymi. Spośród procesów fizyko-chemicznych do oczyszczania odcieków wykorzystuje się koagulację, chemiczne utlenianie, metody membranowe i sorpcję [Forgie 1988, Chianese i in. 1999]. Ze względu na wysokie stężenie, azot amonowy może być usuwany metodą strippingu [Grygorczuk-Petersons 2007]. Procesy biologiczne przeznaczone są głównie do oczyszczania odcieków charakteryzujących się wyższym stosunkiem BZT_c/ChZT pochodzących ze składowisk będących w początkowej fazie eksploatacji [Alvarez-Vazquez i in. 2004].

W procesie koagulacji najczęściej stosowane są sole żelaza i glinu: siarczan żelaza(II), siarczan żelaza(III) oraz polichlorek glinu, dość powszechnie wykorzystywany jest również chlorek żelaza(III) [Tatsi i in. 2003]. Spośród procesów chemicznego utleniania stosowany jest ozon oraz metody pogłębionego utleniania, w których generowane są wysoko reaktywne wolne rodniki OH. Rodniki te działają nieselektywnie, szybko reagują z wieloma związkami organicznymi, w tym z trudno usuwalnymi związkami refrakcyjnymi. W zaawansowanych metodach utleniania stosuje się najczęściej ozon z nadtlenkiem wodoru, promieniowanie UV oraz ich wzajemne połączenia: O₂/ UV, H₂O₂/UV, O₂/H₂O₂/UV. Dodatkowo można stosować katalizatory, np. TiO2, Mn2+, Fe2+ oraz połączenia H₂O₂/Fe²⁺ (reakcja Fentona), TiO₂/ UV, and TiO₂/H₂O₂/UV [Biń i in. 1996, Kang i in. 2000].

Reakcja Fentona opiera się na wytwarzaniu reaktywnych wolnych rodników, jest uznaną metodą pozwalającą na usuwanie barwy i zanieczyszczeń organicznych oraz poprawę warunków biodegradacji opornych zanieczyszczeń występujących w odciekach pochodzących ze składowisk ustabilizowanych [Deng i in. 2006]. Skuteczność reakcji Fentona zależy głównie od pH, dawki reagentów i czasu reakcji. Metoda Fentona zanieczyszczenia usuwane są przez utlenianie, jak i w procesie koagulacji [Rush i in. 1988], przy czym podstawową rolę w usuwaniu zanieczyszczeń organicznych z odcieków odgrywa koagulacja [Yoon i in 1998]. Jednocześnie w wyniku utleniania część związków organicznych ulega przekształcaniu do form łatwiej ulegających biodegradacji, co umożliwia ich dalsze unieszkodliwianie metodami biologicznymi [Peres i in. 2004].

W pracy badano skuteczność podczyszczania odcieków pochodzących z ustabilizowanego składowiska odpadów z wykorzystaniem reakcji Fentona w zależności od dawki siarczanu żelaza-(II) i nadtlenku wodoru.

METODYKA BADAŃ

Do badań zastosowano odcieki pochodzące ze składowiska odpadów stałych zlokalizowanego w pobliżu Bielska Podlaskiego. Obecnie składowisko nie przyjmuje odpadów komunalnych, natomiast na składowisku nadal powstają odcieki. Badania doświadczalne prowadzono z wykorzystaniem siarczanu żelaza(II) w układzie technologicznym obejmującym: oksydację, neutralizację, koagulację, sedymentację i filtrację. W poszczególnych seriach badawczych stosowano siarczan żelaza(II) w dawce 100; 200; 400; 600 i 800 gFe/m³, oraz stałe dawki nadtlenku wodoru, odpowiednio w każdej serii 1260; 1920, 2580 i 3240 gH₂O₂/m³. W zależności od dawki nadtlenku wodoru stosunek Fe/ChZT kształtował się w zakresie 0,12; 0,24; 0,48; 0,71; 0,95, natomiast współczynnik H₂O₂/ChZT wynosił odpowiednio 1,5; 2,3; 3,1 i 3,9. W badaniach technologicznych zastosowano 25% roztwór FeSO₄×7H₂O oraz nadtlenek wodoru o stężeniu 30%, do neutralizacji stosowano H₂SO₄ oraz NaOH (efekt rozcieńczenia odcieków reagentami uwzględniono w obliczeniach). W trakcie badań oznaczano pH, ChZT, BZT₅, barwe, metność, absorbancje UV₂₅₄. Dodatkowo w odciekach surowych badano azot amonowy i przewodność elektrolityczną właściwą. Badania analityczne przeprowadzono zgodnie z procedurą [APHA 1999]. W obliczeniach ChZT uwzględniono nadtlenek wodoru pozostały po procesie wg [Talinli i in. 1992]. Do oznaczenia pH i przewodności wykorzystano pH-metr Hach session 4, BZT₅ oznaczono zestawem Oxitop, mętność nefelometrem Hach, absorbancję UV spektrofotometrem UV-Vis - Pharo 300 w kuwecie 1 cm przy długości fali 254 nm. Oznaczenie pozostałego H₂O₂ w próbce wykonano w oparciu o metodykę zaproponowaną przez [Belhateche i in. 1991]. Pomiar wykonano przy długości fali 310 nm w kuwecie pomiarowej o długości drogi optycznej 1 cm. Badania prowadzono w próbkach o objętości 1 dm³, w pierwszej fazie procesu odcieki doprowadzono do pH=3 za pomocą H₂SO₄, następnie dawkowano siarczan żelaza(II) i nadtlenek wodoru, próbkę wraz z reagentami

mieszano intensywnie przez 30 sek., następnie wolno przez 2 godziny z intensywnością ok. 40 obr./min. Po procesie wolnego mieszania próbki neutralizowano za pomocą NaOH, ponownie mieszano przez 30 minut i pozostawiono do sedymentacji. W oddzielonej od osadów warstwie cieczy sklarowanej oznaczono: ChZT, BZT₅, barwę, mętność oraz absorbancję UV₂₅₄.

WYNIKI BADAŃ I DYSKUSJA

Wartości wskaźników zanieczyszczeń w odciekach przeznaczonych do badań zestawiono w tabeli 1.

Badane odcieki charakteryzowały się średnią wartością ChZT 840 gO_2/m^3 , barwą na poziomie 1050 gPt/m³, nieznaczną mętnością 1,3 NTU, niskim wskaźnikiem BZT₅ 60 gO_2/m^3 , wysoką zawartością substancji rozpuszczonych (przewodność 6,05 mS/cm).

 Tabela 1. Charakterystyka odcieków ze składowiska odpadów

Oznaczenie	Jednostka	Odcieki surowe
Odczyn pH	—	7,95
Barwa	g Pt/m³	1050
Przewodność	mS/cm	6,05
Mętność	NTU	1,3
ChZT _{cr}	g O ₂ /m ³	840
BZT₅	g O ₂ /m³	60
Absorbancja UV _{254 nm}	cm ⁻¹	0,320
Azot amonowy	g/m³	110

Table 1. Characterization of landfill leachate

Skuteczność usuwania barwy i absorbancji UV₂₅₄ przedstawiono na rysunkach 1 i 2. W odciekach po procesie przy najniższej dawce siarczanu żelaza(II) 100 gFe/m3 i nadtlenku wodoru 1260 gH₂O₂/m³ redukcja barwy wynosiła 52,9%, absorbancji UV₂₅₄ 40,1%. Zastosowanie większych dawek H2O2 wpłynęło na zwiększenie skuteczności oczyszczania, i tak przy dawce 1920 gH₂O₂/m³ efekt usuwania barwy wynosił 55,5%, absorbancji UV₂₅₄ 47,3%, przy największej dawce 3240 gH₂O₂/m³ barwa obniżyła się o 80,4%, absorbancja UV₂₅₄ o 60,3%. Skuteczność usuwania barwy i absorbancji UV przy dawce siarczanu żelaza(II) 800 gFe/m3 i poszczególnych dawkach H₂O₂ wynosiła w przypadku barwy odpowiednio 92,2; 93,5; 94,9%, absorbancji UV₂₅₄ 83,9; 84,3; 87,3 i 88%. Największy wpływ nadtlenku wodoru na redukcję badanych wskaźników zaobserwowano przy mniejszych dawkach żelaza. Jednakże wraz ze wzrostem ilości żelaza wpływ H₂O₂ na skuteczność procesu był coraz mniejszy, powyżej 600 gFe/m³ praktycznie nieznaczący.

Efekt usuwania ChZT po procesie w zależności od dawki siarczanu żelaza(II) i nadtlenku wodoru przedstawiono na rysunku 3. W badaniach zaobserwowano, że największy wpływ nadtlenku wodoru na wzrost redukcji ChZT odnotowano przy dawce siarczanu żelaza(II) 100 i 200 gFe/m³, przy większych dawkach żelaza ilość nadtlenku wodoru nie wpływała tak istotnie na obniżenie tego wskaźnika. Skuteczność usuwania ChZT w przypadku najniższej dawki żelaza 100 gFe/m³ w zależności od dawki nadtlenku wodoru kształtowała się w granicach od 21,2 do 53,8% odpowiednio przy najniższej i najwyższej ilości doda-

Rys 1. Skuteczność usuwania barwy w zależności od dawki siarczanu żelaza(II) i nadtlenku wodoru Fig. 1. Color removal at different Iron(II) sulfate and hydrogen peroxide doses

Rys 2. Skuteczność usuwania absorbancji UV₂₅₄ w zależności od dawki siarczanu żelaza(II) i nadtlenku wodoru **Fig. 2.** UV₂₅₄ absorbance removal at different Iron(II) sulfate and hydrogen peroxide doses

Rys 3. Skuteczność usuwania ChZT w zależności od dawki siarczanu żelaza(II) i nadtlenku wodoru Fig. 3. COD removal at different Iron(II) sulfate and hydrogen peroxide doses

nego H_2O_2 . Najniższą wartość ChZT 217,4 gO₂/m³ uzyskano przy dawce siarczanu żelaza(II) 600 gFe/m³ i dawce nadtlenku wodoru 3240 gH₂O₂/m³. W tym przypadku efekt usunięcia ChZT wynosił 74,1%, jednocześnie przy najmniejszej dawce nadtlenku wodoru skuteczność usuwania ChZT wynosiła 60,1%.

Z uwagi na przyjęte dawki żelaza oraz wartość ChZT w odciekach surowych stosunek Fe/ ChZT kształtował się z zakresie od 0,12 do 0,95. Przy czym powyżej wartości Fe/ChZT 0,48 nie obserwowano już tak istotnego obniżenia wartości ChZT. Optymalną wartość współczynnika Fe/ ChZT równą 0,33 podaje [Primo i in. 2008]. Wg badaniach prowadzonych przez Deng i inni w procesie Fentona bardziej decydująca okazuje się dawka nadtlenku wodoru, a teoretyczny stosunek ChZT do H₂O₂ wynosi 470,6/1000 [Deng i in. 2006]. W porównaniu do odcieków surowych po procesie przy dawce żelaza 600 i 800 gFe/m³ odnotowano wzrost współczynnika BZT₅/ChZT. Przy dawce żelaza 600 gFe/m³ i poszczególnych dawkach nadtlenku wodoru wartość BZT₅/ChZT kształtowała się na poziomie od 0,1 do 0,2, natomiast po dodaniu 800 gFe/m³ od 0,15 do 0,3. Podobne rezultaty badań uzyskali [Morais i in. 2005].

WNIOSKI

 Podczyszczanie odcieków z wykorzystaniem reakcji Fentona jest procesem stosunkowo prostym, niewymagającym stosowania zawansowanej aparatury. Zaletą jest również możliwość rozbudowy istniejących instalacji, gdzie prowadzony jest proces koagulacji.

- W badaniach wykazano wzrost skuteczności usuwania ChZT, barwy i absorbancji UV₂₅₄ w zależności od dawki nadtlenku wodoru, przy czym największy wpływ H₂O₂ obserwowano przy dawce siarczanu żelaza(II) 100 i 200 gFe/m³.
- Największą wartość współczynnika BZT₅/ ChZT równą 0,3 uzyskano przy dawce siarczanu żelaza(II) i nadtlenku wodoru odpowiednio 800 gFe/m³ i 3240 gH₂O₂/m³.

LITERATURA

- Alvarez-Vazquez H., Jefferson B., Judd S. 2004. Membrane bioreactors vs conventional biological treatment of landfill leachate: a brief review. Journal of Chemical Technology and Biotechnology, 79, 1043–1049.
- APHA. 1999. Standard methods for the examination of water and wastewater. 20th edition, Washington, DC.
- Belhateche D., Symons J.M. 1991. Using cobalt--ultraviolet spectrophotometry to measure hydrogen peroxide concentration in organically laden groundwaters. Journal of American Water Works Association, 83(8), 70–73.
- Biń A.K., Wąsowski J. 1996. Procesy zaawansowanego utleniania chemicznego w uzdatnianiu wód podziemnych. Wyd. PW, Warszawa.
- Chianese A., Rolando R., Verdone N. 1999. Treatment of landfill leachate by reverse osmosis. Water Res., 33, 647–652.
- Deng Y., Englehardt J.D. 2006. Treatment of landfill leachate by Fenton process, Water Research. 40, 3683–3694.
- Forgie D.J.L. 1988. Selection of the most appropriate leachate treatment methods, Part 2: a review of recirculation, irrigation and potential physicochemical treatment methods. Water Pollut. Res. J., 23, 329–340.
- Grygorczuk-Petersons E.H. 2005. Deamonizacja wód odciekowych, [W:] monografia Komitetu Inżynierii Środowiska PAN vol. 32, 753–757.

- Grygorczuk-Petersons E.H. 2007. Ammonia nitrogen removal from leachates by means of stripping, Polish Journal of Environmental Studies, 16(3B), 158–161.
- Haapea P., Korhonen S., Tuhkanen T. 2002. Treatment of industrial landfill leachates by chemical and biological methods: ozonation, ozonation + hydrogen peroxide, hydrogen peroxide and biological post-treatment for ozonated water. Ozone Sci. Eng. 24, 369–378.
- Kang Y.W., Hwang K.Y. 2000. Effects of reaction conditions on the oxidation efficiency in the Fenton process. Water Res. 34, 2786–2790.
- Morais J.L., Zamora P.P. 2005. Use of advanced oxidation process to improve the biodegradability of mature landfill leachate. J. Hazard. Mater. 123, 181–186.
- Peres J.A., Beltran de Heredia J., Dominguez J.R. 2004. Integrated Fenton's reagent – Coagulation Flocculation process for the Treatment of Cork processing Wastewater. J. Hazard. Mater. 107(3), 115–121.
- Primo O., Rivero M.J., Ortiz I. 2008. Photo-Fenton process as an efficient alternative tothe treatment of landfill leachates, Journal of Hazardous Materials 153, 834–842.
- Rush J.D., Koppenol W.H. 1988. Reactions of iron(II) nitrilotriacetate andiron(II) ethylenediamine--N,N_-diacetate complexes with hydrogen peroxide, J. Am. Chem. Soc. 110, 4957–4963.
- Rügge K., Bjerg P. L., Mosbaek H., Christensen T. 1999. Fate of MCPP and atrazine in an anaerobic landfill leachate plume (Grindsted, Denmark). Water Res., 33(10), 2455–2458.
- Talinli I., Anderson G.K. 1992. Interference of hydrogen peroxide on the standard cod test. Water Research, 26(1), 107–110.
- Tatsi A.A., Zouboulis A.I., Matis K.A., Samaras P. 2003. Coagulation-flocculation pretreatment of sanitary landfill leachates. chemosphere 53, 737–744.
- Yoon J., Cho S., Cho Y., Kim S. 1988. The characteristics of coagulation of Fenton reaction in the removal of landfill leachate organics. Water Sci. Technol. 38, 209–214.